On Downloading COREs

When Reset is pressed, CORE runs an initialization routine starting at location
$FO00 in the ROM. This routine checks the value of the two bytes starting at location
$8000 in the RAM. If those two bytes are equal to $C0 DE, then CORE runs a program
beginning at location $8002. This is what happens in a normal unit.

If the two bytes are equal to anything besides $C0 DE, control passes to the Download

routine in ROM. In order to change the value of $8000-1, there are 2 methods

1. remove the programming door and move the leftmost switch to the left position.
This un-write-protects the RAM. Then hold down the "d" key and press Reset.
This writes a zero to $8000 and jumps to Download. (This procedure will not
necessarily work if CORE doesn't have good code in it, in which case use the next
method.)

2. remove the programming door and move both switches to the left. This
un-write-protects the RAM and deactivates the lithium battery. Then remove a
battery, wait a few minutes and replace the battery. CORE will then have
completely random code in it and the odds are 65535 to 1 that you will be able to
download.

The procedure for downloading using the Apple ile or llc is described below. This
procedure can be modified for any computer that can send serial data at 19200 baud.
1. There is a BASIC program called DOWNLOAD.ALL which initializes the serial
port, loads a binary file called BIGLOAD into memory, asks the user to Reset the
CORE and then press a key on the Apple to begin downloading,
2. The binary file BIGLOAD loads at $3E00-7FFF on the Apple and contains the
following:
® $3E00-3EFF: a machine language program which outputs data to the CORE,
starting with location $3F00 and ending with $7FFF. The source code for this
program is enclosed here. (Note: there are a couple of versions of this code
floating around: this may not be the one on the disk you have.)
® $3F00-3FFF: the CORE "bootstrap" program. This program is sent to the CORE,
stored in locations $7F00-7FFF on CORE, then executed. The parameters of this
program determine how many more blocks of data are to be received, and what
locations they are to be stored in. In the normal case, an additional 64 blocks (of
256 bytes each) are sent and stored at locations $8000-$BFFF on CORE.
3. There is a special protocol for sending data to the CORE. The actual bytes from the
file (e.g. BIGLOAD) are not sent directly but rather as follows.
® The first byte of the file is sent directly to the CORE
@ Fach subsequent byte is "exclusive or'd" with the previous byte, and the
resulting value is sent to the CORE. For example, if the first three bytes of the
file are $55 SFF $AA, what will be sent is $55 $AA $55. When the CORE
receives the data, each byte is EOR'd with the previous byte (the first byte being
EOR'd with zero), so the data would be transformed back to $55 $FF SAA.

1

L)
22

23
26
27

~
il

29

*

* Sample Apple Ilc download orogram

®

wakeun

nexztpage

nestbvte

#
sendbyte
msdelay

nextwait

trg
lda
Jsr
dec
brie
T
Stu
lda
cta
tay
eor
jsr
iny
bne
inyg
Cpu
bce
rts

Jar
pha
lda
ade
bne
pla
rts

$ 3200
i

madel ay
a
Wakeup
#4531

I

0

0

(0 oy
sendbyte

nextbyte
##B0
nextpage
Ffded

#0

#1
nextwait

skpuk

145
l&s
147
148
165
170
171
172
173
174
175
174
177
£7H
179
180
181
1BZ
g3
184
LBS

O e

[Aewowvt oy LaoeRlE v Uy

FEREAREAFRERERRERFEF R FEARFES

stopwait jsr wmsdel ay
clh inflag clear false inl9200 flag
*
Tdx #<buf BuF =g 7Fc0o
JEr pagel oad
lda buf+$ff
brie stopwalt checksum test (B bit parity)
Jmp buf
3 B B A A R R N R
pageload sty ptr+i
lda #0
sta ptr
tay
byteload jsr vinwait
a0 indata
sta tptr) v
Tda indata
iny
bre byteload
rte

i
b kv BN W T R N % B

+

* Bootstrap program at $7F00 in CORE

pagel oad
o

nestpage

equ

org
Tdx
jar
inx
CpX
bce
Jmp
s

dfb

££05cC

F7H00
#E£80
pageload

#E5c0
nextpage
Fha0o
FHEf—% 555
F00

start 2ddness (§%9000)

and addaisn ("f?(:oon < l)
rum addmness

FOR CHECKSLM! 1!

